
Inhaltsverzeichnis

GEAREXGanzstahlzahnkupplung99Funktionsbeschreibung101Kupplungsauslegung102Bauart FA, Bauart FB und Bauart FAB103Verlagerungen104Flanschabmessungen105

Funktionsbeschreibung

GEAREX-Kupplungen aus Stahl mit Fettschmierung und Rundschnurring-Abdichtung entsprechen dem internationalen Standard. Sie eignen sich als flexible Wellenverbindungen für eine formschlüssige Drehmomentübertragung. Zudem gewährleisten sie einen Ausgleich axialer, radialer und winkeliger Wellenverlagerungen.

Zum Einsatz kommen GEAREX-Kupplungen in allen Bereichen des Maschinenbaues bei hoher Betriebssicherheit sowie Lebensdauererwartung infolge der zuverlässigen Fettschmierung der Balligverzahnung. Die Kupplungen sind für horizontalen Einbau geeignet. Als Sonderlösung sind diese auch für den vertikalen Einbau geeignet.

Es stehen verschiedene Kupplungsgrößen für eine Drehmomentübertragung von 930 Nm bis 135.000 Nm bei Wellenabmessungen bis max. Ø 276 mm zur Verfügung. Eine Vergrößerung der Kupplungsdrehmomente kann durch Einsatz von Sonderwerkstoffen erfolgen.

GEAREX-Kupplungen entsprechen dem AGMA-Standard (American Gear Manufacturer Association). Kleine Bauabmessungen sowie geringes Eigengewicht mit niedrigem Massenträgheitsmoment bewirken einen großen Anwendungsbereich der GEAREX-Kupplungen.

Nach der Wirkungsweise des bekannten Balligzahnprinzips werden bei Winkel- und Radialverlagerungen, Kantenpressungen in der Verzahnung vermieden. Zusätzlich ergeben sich durch die dauerhafte Fettschmierung günstige Reibverhältnisse der Verzahnung mit nahezu verschleißfreien Betrieb, verbunden mit einer hohen Lebensdauererwartung der Kupplung.

Um eine regelmäßige und kontrollierte Schmierung, im eingebauten Zustand, sicherzustellen, befinden sich radial an jeder Kupplungshülse zwei gegenüberliegende Hydraulikanschlüsse. Folglich bei einer kompletten GEAREX-Kupplung, vier Anschlüsse um 90° zu einander versetzt.

Der Kupplungsinnenraum wird mittels Rundschnurringe (NBR 70 ShA), abgedichtet.

Die Passfedernuten sind bei der Montage gegen Schmiermittelaustritt abzudichten.

Ex-Schutz Einsatz

GEAREX-Kupplungen eignen sich für die Kraftübertragung in Antrieben, die für den Einsatz in explosionsgefährdeten Bereichen vorgesehen sind. Die Kupplungen sind nach EG-Richtlinie 94/9/EG (ATEX 95) als Geräte der Kategorie 2G/2D beurteilt und bestätigt und somit für den Einsatz in explosionsgefährdeten Bereichen der Zone 1, 2, 21 und 22 geeignet. Bitte lesen Sie hierzu auch die Hinweise in der jeweiligen Baumusterprüfbescheinigung und der Betriebsund Montageanleitung; einzusehen unter www.ktr.com.

Kupplungsauslegung

Die Kupplung muss so bemessen sein, dass die zulässige Kupplungsbeanspruchung in keinem Betriebszustand überschritten wird. Dazu ist ein Vergleich der auftretenden Beanspruchungen mit den zulässigen Kupplungskennwerten durchzuführen.

1 Kupplungsauslegung

Die Auslegung der Kupplung erfolgt nach dem Nenndrehmoment (T_{KN}). Hierbei sind entsprechende Betriebsfaktoren für die Antriebsmaschine zu berücksichtigen. Siehe Anlauffaktor S_Z und Betriebsfaktor S_B .

2 Belastung der Kupplung

$$T_{KN} \ge T_{NS}$$

$$T_{NS} = T_{N} \cdot S_{Z} \cdot S_{B}$$

$$T_{N} [Nm] = 9550 \cdot \frac{P_{AN/LN} [kW]}{n [1/min]}$$

T_{KN} = Nenndrehmoment der Kupplung

T_N = Antriebsdrehmoment

TNS = Antriebsdrehmoment einschließlich Betriebsfaktoren

 S_Z = Anlauffaktor S_B = Betriebsfaktor

3 Anlaufdrehmoment

Das zulässige Anlaufdrehmoment der Anlage sollte das 2-fache Nenndrehmoment der Kupplung nicht überschreiten.

4 Zulässige Passfedernutbelastung der Kupplung

Die Welle-Naben-Verbindung ist kundenseitig zu überprüfen. Zulässige Flächenpressung nach DIN 6892 (Methode C).

5 Zulässiger Temperaturbereich

Die Kupplung ist in einem Temperaturbereich von -20 °C bis +80 °C einsetzbar.

6 Auslegungsbeispiel

E-Motor: 30 kW

Anwendung: Textilmaschine

Wellen-Ø: 70/65 mm

Drehzahl: 250 1/min

Anläufe: < 10/h

Anlaufdrehmoment: 2,5 · T_{KN}

Ergebnis:

$$T_{N} = 9550 \cdot \frac{30 \text{ kW}}{250 \text{ 1/min}}$$

 $T_N = 1146 \text{ Nm}$

 $T_{NS} = 1146 \text{ Nm} \cdot 1 \cdot 1,25$

 $T_{NS} = 1432,5 \text{ Nm}$

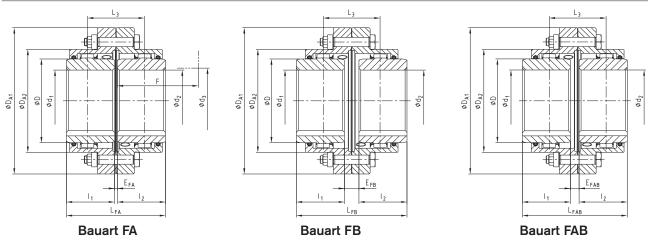
Ausgewählte Kupplung:

GEAREX 15 (T_{KN} = 2000 Nm)

Das Anfahrdrehmoment der Anlage beträgt das 2,5-fache des Antriebsdrehmomentes (3581 Nm).

(zulässig $2 \cdot T_{KN} = 4000 \text{ Nm}$)

Anlauffaktor S _Z							
Anlaufhäufigkeit/h 10 25 50							
s _Z	1,0	1,2	1,4				

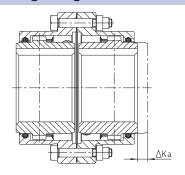

	Betriebsfa	aktoren S _B	
Belastungs- art	Betriebsmerkmale	Arbeitsmaschinen	Betriebs- faktor
Gleichmäßig	Dauerbetrieb ohne Über- last oder Stoßbelastung. Geringe Einschalthäufig- keit.	Elektrische Generatoren Radialpumpen Leichte Lüfter	1,00
Leicht	Dauerbetrieb mit leichter Übelast und kurzzeitiger und seltener Stoßbe- lastung.	Mehrstufige Radialgebläse Kolbenpumpen Große Lüfter (Schwerlastbetrieb) Rührwerke für Flüssigkeiten Rührwerke für Feststoffe Textilmaschinen Werkzeugmaschinen Bandförderer Hebewerke	1,25
Mittel	Ausgesetzter Betrieb mit leichter Stoßbelastung und kurzzeitiger mittlerer Überlast.	Kolbenverdichter Kräne (Lauf- oder Zugbewegung) Fördermaschinen Kalander für Gummi und Kunststoff Glättmaschinen Walzwerkantriebe Nicht-reversierende Kaltwalzwerke	1,50
Schwer	Betrieb mit schwerer und häufiger Stoßbelastung. Häufige Lastumkehr. Hoher Sicherheitsgrad.	Brückenkräne für die Stahlindustrie Mischer für Gummi und Kunststoff Kräne (Schwerlastbetrieb) Holzschleifer Schiffsantriebe Ausrüstungen für den Personentransport Grubenlüfter Rollgänge Nicht-reversierende Kaltwalzwerke Reversierende Kaltwalzwerke	2,00
Sehr schwer	Äußerst und Überlast mit häufiger und plötzlicher Lastumkehr.	Reversierende Walzwerk- antriebe Schwerlastbetrieb in der Stahlindustrie Schlitzmaschinen Schleifmaschinen Scheren und Schneide- einrichtungen Gesteinsbrecher	2,50

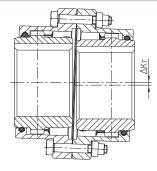
Bauart FA, Bauart FB und Bauart FAB

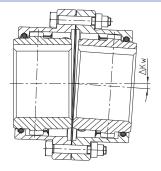
- Doppelkardanische Balligzahnkupplung
- Verwendung für alle Antriebsfälle im Bereich des Maschinenbaus
- Ausgleich Wellenfluchtungsfehler Axial Radial Winkel
- Lieferbar mit Fertigbohrung nach ISO, Passfedernut nach DIN 6885 Bl. 1, Konus- und Zollbohrungen
- Für den horizontalen Einbau
- Höhere Drehmomente durch Sonderwerkstoffe
- Schutz beurteilt und bestätigt nach EG-Richtlinie 94/9/EG

Abmessungen															
	max. Fertig-		Abmessungen									Fett- 2)			
Größe	bohrung							[mm]							füllung
	d ₁ ; d ₂	l ₁ , l ₂	E _{FA}	E _{FB}	E _{FAB}	L _{FA}	L _{FB}	L _{FAB}	L ₃	D	D _{A1}	D _{A2}	F 1)	d ₃ 1)	[dm³]
10	50	43	3	21	12	89	107	98	55	67	111	84	74	52	0,02
15	64	50	3	15	9	103	115	109	59	87	152	107	84	68	0,04
20	80	62	3	31	17	127	155	141	79	108	178	129,5	104	85	0,08
25	98	76	5	29	17	157	181	169	93	130	213	156	123	110	0,12
30	112	90	5	33	19	185	213	199	109	153	240	181	148	130	0,18
35	133	105	6	40	21,5	216	250	233	128	180	280	211	172	150	0,22
40	158	120	6	42	24	246	282	264	144	214	318	249,5	192	175	0,35
45	172	135	8	50	29	278	320	299	164	233	347	274	216	190	0,45
50	192	150	8	56	32	308	356	332	182	260	390	307	241	220	0,70
55	210	175	8	70	39	358	420	389	214	283	425,5	332,5	275	250	0,90
60	232	190	8	84	46	388	464	426	236	312	457	364	316	265	1,15
70	276	220	10	76	43	450	516	483	263	371	527	423,5	360	300	1,50

¹⁾ Benötigter Bauraum zum Ausrichten der Kupplung bzw. zum Erneuern des Dichtringes


2)	Fettfüllung	je	Kupplungshälfte
----	-------------	----	-----------------


	Technische Daten									
Größe		noment m]	max. Drehzahl		ax Drehzahl I		Massenträgheitsmoment bei max. Bohrung		ssschraube (10.9)	
	T _{KN}	T _{Kmax} .	[1///////	Hülse	Nabe	Gesamt	[kgm²]	Z	М	T _A [Nm]
10	930	1860	8500	0,748	0,553	2,73	0,00436	6	M6	15
15	2000	4000	7700	1,878	1,119	6,38	0,01894	8	M8	36
20	3500	7000	6900	2,602	2,089	9,94	0,04000	6	M10	72
25	6500	13000	6200	4,432	3,564	16,83	0,09749	6	M12	125
30	10000	20000	5800	5,829	6,184	25,21	0,18080	8	M12	125
35	17000	34000	5100	9,705	9,868	41,25	0,41419	8	M14	200
40	28500	57000	4500	11,883	16,065	58,14	0,75535	8	M14	200
45	37000	74000	4000	15,724	21,419	77,08	1,17590	10	M14	200
50	51000	102000	3750	25,661	29,594	114,40	2,24991	8	M18	430
55	65000	130000	3550	31,522	40,304	150,41	3,45102	14	M18	430
60	85000	170000	3400	32,822	52,960	177,44	4,16734	14	M18	430
70	135000	270000	3200	43,521	85,768	268,20	9,32429	16	M20	610


Bestell- beispiel:	GEAREX FA 10	d ₁ Ø 50	d ₂ Ø 50		
beispiei.	Kupplungsgröße	Fertigbohrung	Fertigbohrung		
	und Bauart	Nute DIN 6885 Bl. 1	Nute DIN 6885 Bl. 1		

Verlagerungen

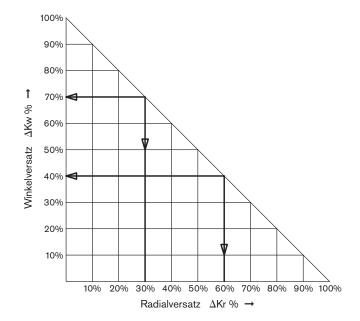
Axialverlagerung

Radialverlagerung

Winkellverlagerung

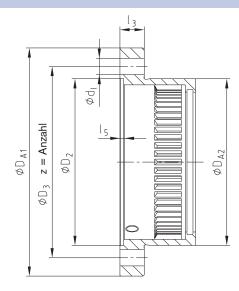
Verlagerungen							
Größe	Max. Axialverschiebung ΔKa	Max. zulässige Verlagerungen 1)					
	[mm]	ΔKr [mm]	ΔKw [°]				
10		0,4					
15		0,5					
20		0,6					
25	± 1,0	0,8					
30		1,0					
35		1,0	0,5° pro Nabe				
40		1,2	0,5 pro Nabe				
45		1,4					
50		1,6					
55	± 1,5	1,8					
60		2,0					
70		2,2					

 Verlagerungswerte sind Maximalwerte, die nicht gleichzeitig auftreten dürfen. Bei gleichzeitigem Radial- und Winkelversatz sind diese Werte zu reduzieren.

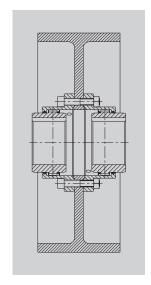

(siehe Berechnungsbeispiele und Diagramm)

Beispiel 1:

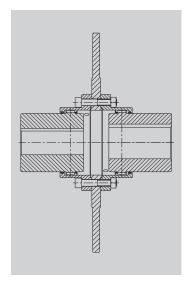
 $\Delta Kr = 30\%$ $\Delta Kw = 70\%$


Beispiel 2:

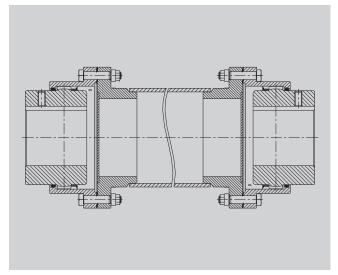
 $\Delta Kr = 60\%$ $\Delta Kw = 40\%$



Flanschabmessungen



	Flanschabmessungen									
				Abmessu	ngen [mm]					
Größe	D _{A1}	D _{A2}	D ₂	D ₃	d _l	Anzahl z	l ₃	l ₅		
10	111	84	82	95,25	6,35	6	14	3		
15	152	107	105	122,24	9,52	8	19	3		
20	178	130	130	149,23	12,70	6	19	3		
25	213	158	153	180,97	15,87	6	22	4		
30	240	182	178	206,38	15,87	8	22	4		
35	280	214	205	241,30	19,05	8	28,5	5		
40	318	250	243	279,40	19,05	8	28,5	4		
45	347	274	265	304,80	19,05	10	28,5	5,5		
50	390	309	302	342,90	22,22	8	38	6		
55	424,5	334	320	368,30	22,22	14	38	6		
60	457	365,5	353	400,05	22,22	14	26	6		
70	527	425	412	463,55	25,40	16	28,5	8		


Weitere Bauarten

Bauart mit Bremstrommel

Bauart mit Bremsscheibe

Bauart FH mit Zwischenrohr